Дедукция - определение. Что такое Дедукция
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Дедукция - определение

МЕТОД МЫШЛЕНИЯ
Дедукция; Дедуктивные умозаключения; Дедуктивный метод; Метод дедукции
  • индукции]] и дедукции
Найдено результатов: 9
ДЕДУКЦИЯ         
и, ж.
Логическое умозаключение от общего к частному, от обобщений к конкретным или другим общим ут-верждениям.||Ср. ИНДУКЦИЯ I, ЭКСТРАПОЛЯЦИЯ.
ДЕДУКЦИЯ         
способ рассуждения от общих положений к частным выводам индукция
дедукция         
ДЕД'УКЦИЯ, дедукции, мн. нет, ·жен. (·лат. deductio - выведение) (научн.). Метод мышления, при котором новое положение выводится чисто логическим путем из предшествующих; ант. индукция
.
ДЕДУКЦИЯ         
(от лат. deductio - выведение), вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического следования. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений ("общее"), а концом - следствия из посылок, теоремы ("частное"). Если посылки дедукции истинны, то истинны и ее следствия. Дедукция - основное средство доказательства (см. Аксиоматический метод, Индукция).
Дедукция         
Дедукция (от deducere - выводить) - термин современной логики,обозначающий выведение одной мысли из другой, делаемое на основаниилогических законов. Большинство логиков под словом Д. разумеют выведениечастного из общего: такое ограничение, однако, не имеет основания. Д.получила значение термина лишь в новой логике, главным образом благодарятрудам английских мыслителей, рассматривающих Д. в противоположностьиндуктивному методу. понятие Д. встречается уже у Аристотеля (apagwgh).Латинская форма, deductio, впервые встречается в сочинениях Боэция; нокак у Аристотеля, так и у Боэция Д. не противополагается индукции, аобозначает собою понятие тожественное с силлогизмом и с доказательством.В средневековой, схоластической логике слово Д. не играет роли термина.В знаменитой поррояльской логике Арно ("Logique ou l'art de penser") Д.,как термин, тоже не встречается; нет его еще и в логике Канта.Следовательно, термин Д. составляет принадлежность логики XIX века. Ещеи в настоящее время в некоторых сочинениях по логике Д. отожествляют ссиллогизмом и считают его единственным правомерным способомумозаключения (см., напр., Rabier, "Logique", 1886). Отожествлению Д. ссиллогизмом мешает, однако, то обстоятельство, что силлогизм есть лишьформа Д., а не самый процесс. От узкого значения термина Д. следуетотличать более широкое: совокупность процессов научного мышления(разделение и определение понятий, доказательство положения), за вычетоминдукции. Понимаемая в таком смысле, Д. оказывается процессом, прямопротивоположным индукции; эту противоположность видят как в исходныхточках, так и в способах перехода от одной мысли к другой и, наконец, вконечных целях. Такое воззрение защищал в русской литературе М. П.Владиславлев ("Логика", СПб., 1872), стоявший в данном случае подвлиянием Милля, Бэна и др. Нельзя отрицать различия между Д. ииндукцией, но противоположение их не имеет никакого основания.Человеческое мышление одно; как бы ни были разнообразны предметы,направление и цель мышления, одни и те же законы управляют мыслью.Противополагать Д. во всем индуктивному мышлению - значит вноситьдуализм в человеческое сознание. Различие Д. от индукции получилохарактер противоположности вследствие развития опытных наук в новоевремя. Успехи опытного знания повлекли за собой подробное исследованиеметодов его, при чем иногда забывали, что в индукции имеется дело с темже самым мышлением, в применении его к фактам внутреннего и внешнегомира. Неудачи спекулятивной философии, пользовавшейся по преимуществуД., способствовали расширению пропасти между индукцией и дедукцией.Между тем, легко заметить сродство индукции с Д.; не говоря о такназываемой полной индукции (умозаключении от всех членов известнойгруппы к самой группе), которая представляет собою пример совершенноправильного силлогизма, т.е. Д. - и так называемая неполная индукция, т.е. заключение от частного к общему, имеет своим основанием законтожества, ибо в неполной индукции от некоторых случаев мы заключаем ковсем на том основании, что рассматриваем эти некоторые случаи кактипические представители всей группы. Д. С. Милль свел индуктивныеметоды исследования к четырем основным: Метод различия, согласия,остатков и сопутствующих изменений. Рассматривая их, легко убедиться,что они представляют собой не что иное, как различные способыумозаключения, основанных на законе тожества. Метод остатков, например,представляет собой чистый случай определения путем исключения, т. е.умозаключение разделительное. В превосходном труде Каринского:"Классификация выводов" (СПб., 1880) есть множество доказательств тому,что противуположение индукции и Д., в той форме, в которой онообыкновенно делается, неосновательно, и что, поэтому, нельзя делить всевыводы на индуктивные и дедуктивные. С другой стороны, некоторыесиллогистические выводы представляют собою пример умозаключений отчастного к частному, на что впервые обратил внимание Дж. С. Милль. Такимобразом, отожествляя Д. с силлогизмом, нельзя в то же время утверждать,что Д. есть всегда умозаключение от общего к частному, а следует датьболее общее определение, с которого мы и начали настоящую заметку.Полное определение понятия Д. требует, помимо указания отношения ее киндукции, еще рассмотрения отношения Д. к анализу. Анализом называетсяприем мышления, посредством которого разлагается на составные элементыто, что в сознании дано как нечто целое; Анализ противуполагаетсясинтезу; но и в Д. выводится из известной мысли с необходимостью другая,которая была заключена implicite в первой; отсюда сходство Д. и анализаочевидно. Если, однако, допустить, что форма Д. - силлогизм, то придетсясказать, что Анализ - более общее понятие, чем Д. Всякая Д. есть Анализ,ибо разъясняет данное положение, выводя из него другое, заключенное внем; но не всякий Анализ есть Д. Анализ есть действие более простое, чемД. В состав каждого процесса Д. входят следующие элементы: положение, изкоторого делается вывод и которое в таком случае назыв. основанием;самый процесс выведения из основания мысли, в нем заключенной, и,наконец, вывод или мысль, добытая из основания и поставленная какотдельное положение. Положения, из которых делаются выводы, могут бытьчрезвычайно разнообразны, но в конце концов сводятся к двум родам:самоочевидные истины (аксиомы) и обобщения, добытые из опыта. Процессвыведения не меняет характера основания, из которого получается вывод,т. е. вывод из аксиомы сам получает аксиоматический характер; вывод изэмпирического положения есть факт, могущий быть проверенным на опыте.Самый процесс Д. основан на законе тожества. Частное подводится подобщее на том основании, что оно по содержанию тожественно с общим; то жесамое положение можно заметить и в заключении от частного к частному.Самый вывод, наконец, есть положение, в котором признается тожествоподводимого с тем положением, под которое мы подводим. Э. Радлов.
Дедукция         
(от лат. deductio - выведение)

переход от общего к частному; в более специальном смысле термин "Д." обозначает процесс логического вывода, т. е. перехода по тем или иным правилам логики (См. Логика) от некоторых данных предложений - посылок к их следствиям (заключениям), причём в некотором смысле следствия всегда можно характеризовать как "частные случаи" ("примеры") общих посылок. Термин "Д." употребляется и для обозначения конкретных выводов следствий из посылок (т. е. как синоним термина "вывод" в одном из его значений), и - чаще - как родовое наименование общей теории построений правильных выводов (умозаключений (См. Умозаключение)). В соответствии с этим последним словоупотреблением, науки, предложения которых получаются (хотя бы преимущественно) как следствия некоторых общих "базисных законов" (принципов, постулатов, аксиом и т.п.), принято называть дедуктивными (математика, теоретическая механика, некоторые разделы физики и др.), а Аксиоматический метод, посредством которого производятся выводы этих частных предложений, часто называют аксиоматико-дедуктивным.

Изучение Д. составляет главную задачу логики; иногда логику - во всяком случае логику формальную - даже определяют как "теорию Д.", хотя логика далеко не единственная наука, изучающая методы Д.: Психология изучает реализацию Д. в процессе реального индивидуального мышления и его формирования, а гносеология (Теория познания) - как один из основных (наряду с другими, в частности различными формами индукции (См. Индукция)) методов научного познания мира.

Хотя сам термин "Д." впервые употреблён, по-видимому, Боэцием (См. Боэций), понятие Д. - как Доказательство какого-либо предложения посредством Силлогизма - фигурирует уже у Аристотеля (См. Аристотель) ("Первая Аналитика"). В философии и логике средних веков и нового времени имели место значительные расхождения во взглядах на роль Д. в ряду др. методов познания. Так, Р. Декарт противопоставлял Д. интуиции (См. Интуиция), посредством которой, по его мнению, человеческий разум "непосредственно усматривает" истину, в то время как Д. доставляет разуму лишь "опосредованное" (полученное путём рассуждения) знание. (Провозглашённый Декартом примат интуиции над Д. возродился гораздо позже и в значительно изменённых и развитых формах в концепциях так называемого интуиционизма.) Ф. Бэкон, а позднее др. английские логики-"индуктивисты"(У. Уэвелл, Дж. С. Милль, А. Бэн и др.), справедливо отмечая, что в заключении, полученном посредством Д., не содержится (если выражаться на современном языке) никакой "информации", которая не содержалась бы (пусть неявно) в посылках, считали на этом основании Д. "второстепенным" методом, в то время как подлинное знание, по их мнению, даёт только индукция. Наконец, представители направления, идущего в первую очередь от немецкой философии (X. Вольф, Г. В. Лейбниц), также, исходя по сути дела из того, что Д. не даёт "новых" фактов, именно на этом основании приходили к прямо противоположному выводу: полученные путём Д. знания являются "истинными во всех возможных мирах" (или, как говорил позже И. Кант, "аналитически истинными"), чем и определяется их "непреходящая" ценность [в отличие от полученных индуктивным обобщением данных наблюдения и опыта "фактических" ("синтетических") истин, верных, так сказать, "лишь в силу стечения обстоятельств"].

С современной точки зрения вопрос о взаимных "преимуществах" Д. или индукции в значительной мере утратил смысл. Уже Ф. Энгельс писал, что "индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую из них на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга" ("Диалектика природы", 1969, с. 195 - 196). Однако и независимо от отмечаемой здесь диалектической взаимосвязи Д. и индукции и их применений изучение принципов Д. имеет громадное самостоятельное значение. Именно исследование этих принципов как таковых и составило по существу основное содержание всей формальной логики - от Аристотеля до наших дней. Более того, в настоящее время всё активнее ведутся работы по созданию различных систем "индуктивной логики", причём (такова диалектика этих на первый взгляд полярных понятий) своего рода идеалом здесь представляется создание "дедуктивноподобных" систем, т. е. совокупностей таких правил, следуя которым можно было бы получать заключения, имеющие если не 100\%-ную достоверность (как знания, полученные путём Д.), то хотя бы достаточно большую "степень правдоподобия", или "вероятность" (см. Вероятностная логика).

Что же касается формальной логики в более узком смысле этого термина, то как к самой по себе системе логических правил, так и к любым их применениям в любой области в полной мере относится положение о том, что всё, что заключено в любой полученной посредством дедуктивного умозаключения "аналитической (или "логической") истине", содержится уже в посылках, из которых она выведена: каждое применение правила в том и состоит, что общее положение относится (применяется, прилагается) к некоторой конкретной ("частной") ситуации. Некоторые правила логического вывода подпадают под такую характеристику и совсем явным образом; например, различные модификации так называемого правила подстановки гласят, что свойство доказуемости (или выводимости из данной системы посылок) сохраняется при любой замене элементов произвольной формулы данной формальной теории "конкретными" выражениями "того же вида". То же относится к распространённому способу задания аксиоматических систем посредством так называемых схем аксиом, т. е. выражений, обращающихся в "конкретные" аксиомы после подстановки вместо входящих в них "родовых" обозначений конкретных формул данной теории.

Но какой бы конкретный вид ни имело данное правило, любое его применение всегда носит характер Д. "Непреложность", обязательность, "формальность" правил логики, не ведающая никаких исключений, таит в себе богатейшие возможности автоматизации самого процесса логического вывода с использованием ЭВМ (см. Алгоритм, Кибернетика).

Под Д. часто понимают и сам процесс логического следования. Это обусловливает тесную связь (а иногда даже отождествление) понятия Д. с понятиями вывода и следствия, находящую своё отражение и в логической терминологии; так, "теоремой о Д." принято называть одно из важных соотношений между логической связкой импликации (формализующей словесный оборот "Если..., то... ") и отношением логического следования (выводимости): если из посылки А выводится следствие В, то импликация А ⊃ В ("Если А..., то В...") доказуема (т. е. выводима уже без всяких посылок, из одних только аксиом). (Теорема о Д., справедливая при некоторых достаточно общих условиях для всех "полноценных" логических систем, в некоторых случаях просто постулируется для них в качестве исходного правила.) Аналогичный характер носят и другие связанные с понятием Д. логические термины; так, дедуктивно эквивалентными называются предложения, выводимые друг из друга; дедуктивная полнота системы (относительно какого-либо свойства) состоит в том, что все выражения данной системы, обладающие этим свойством (например, истинностью при некоторой интерпретации (См. Интерпретация)), доказуемы в ней.

Свойства Д. - это по сути дела свойства отношения выводимости. Поэтому и раскрывались они преимущественно в ходе построения конкретных логических (и логико-математических) формальных систем (исчислений (См. Исчисление)) и общей теории таких систем (так называемой теории доказательства). Большой вклад в это изучение внесли: создатель формальной логики Аристотель и др. античные учёные; выдвинувший идею формального логического исчисления (и справедливо считающийся провозвестником математической логики) Г. В. Лейбниц; создатели первых алгебрологических систем Дж. Буль, У. Джевонс, П. С. Порецкий, Ч. Пирс; создатели первых логико-математических аксиоматических систем Дж. Пеано, Г. Фреге, Б. Рассел; наконец, идущая от Д. Гильберта школа современных исследователей (К. Гёдель, А. Чёрч, Ж. Эрбран и др.), включая создателей теории Д. в виде так называемых исчислений естественного вывода (или "натуральной Д.") немецкого логика Г. Генцена, польского логика С. Яськовского и нидерландского логика Э. Бета. Теория Д. активно разрабатывается и в настоящее время, в том числе и в СССР (П. С. Новиков, А. А. Марков, Н. А. Шанин, А. С. Есенин-Вольпин и др.).

Лит.: Аристотель, Аналитики первая и вторая, пер. с греч., М., 1952; Декарт P., Правила для руководства ума, пер. с. лат., М. - Л., 1936; его же, Рассуждение о методе, М., 1953; Лейбниц Г. В., Новые опыты о человеческом разуме М. - Л., 1936; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Асмус В. Ф., Учение логики о доказательстве и опровержении, М., 1954.

Ю. А. Гастев.

дедукция         
ж.
Логическое умозаключение, переход от общих положений, законов и т.п. к частному, конкретному выводу (противоп.: индукция) (в философии).
Дедуктивное умозаключение         
Деду́кция ( — выведениеdeductio // A Dictionary of Greek and Roman Antiquities (1890)., также дедукти́вное умозаключе́ние, силлоги́зм) — вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического следования. В дедукции вывод строится от общих положений к частным случаям. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений («общее»), а концом — следствия из посылок, теоремы («частное»). Если посылки дедукции истинны, то истинны и её следствия. Дедукция — осно
Теорема о дедукции         
Теорема о дедукции (лемма о дедукции, теорема дедукции) — один из фундаментальных результатов в теории доказательств, формализует способ рассуждения, при котором для установления импликации A \Rightarrow B используется A в качестве необходимого условия вывода. Используется для установления существования выводов и доказательств, не используя их построения.

Википедия

Дедуктивное умозаключение

Деду́кция (лат. deductio «выведение», также дедукти́вное умозаключе́ние, силлоги́зм) — вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического следования. В дедукции вывод строится от общих положений к частным случаям. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений (общее), а концом — следствия из посылок, теоремы (частное). Если посылки дедукции истинны, то истинны и её следствия. Дедукция — основное средство доказательства.

Аксиоматический метод — способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории. См. также индукция.

Таким образом, дедукция — метод мышления, следствием которого является логический вывод, истинность которого гарантируется истинностью посылок. Также может определяться логико-методологическая процедура, посредством которой осуществляется переход от общего к частному в процессе рассуждения.

Пример простейшего дедуктивного умозаключения:

Что такое ДЕДУКЦИЯ - определение